A Survey of Elastic Matching Techniques for Handwritten Character Recognition

نویسندگان

  • Seiichi Uchida
  • Hiroaki Sakoe
چکیده

This paper presents a survey of elastic matching (EM) techniques employed in handwritten character recognition. EM is often called deformable template, flexible matching, or nonlinear template matching, and defined as the optimization problem of two-dimensional warping (2DW) which specifies the pixel-to-pixel correspondence between two subjected character image patterns. The pattern distance evaluated under optimized 2DW is invariant to a certain range of geometric deformations. Thus, by using the EM distance as a discriminant function, recognition systems robust to the deformations of handwritten characters can be realized. In this paper, EM techniques are classified according to the type of 2DW and the properties of each class are outlined. Several topics around EM, such as the category-dependent deformation tendency of handwritten characters, are also discussed. key words: elastic matching, handwritten character recognition, deformation, optimization, survey

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elastic Matching Techniques for Handwritten Character Recognition

This chapter reviews various elastic matching techniques for handwritten character recognition. Elastic matching is formulated as an optimization problem of planar matching, or pixel-to-pixel correspondence, between two character images under a certain matching model, such as affine and nonlinear. Use of elastic matching instead of rigid matching improves the robustness of recognition systems a...

متن کامل

Handwritten character recognition using elastic matching based on a class-dependent deformation model

For handwritten character recognition, a new elastic image matching (EM) technique based on a class-dependent deformation model is proposed. In the deformation model, any deformation of a class is described by a linear combination of eigen-deformations, which are intrinsic deformation directions of the class. The eigen-deformations can be estimated statistically from the actual deformations of ...

متن کامل

A handwritten character recognition method based on unconstrained elastic matching and eigen-deformations

A fast elastic matching based handwritten character recognition method is investigated. In the present method, an unconstrained elastic matching technique, where the matching is optimized locally and individually on each pixel, is utilized together with its a posteriori evaluation based on the eigen-deformations of handwritten characters. Our experimental results show that high recognition rate...

متن کامل

Eigen-deformations for elastic matching based handwritten character recognition

Deformations in handwritten characters have category-dependent tendencies. In this paper, the estimation and the utilization of such tendencies called eigen-deformations are investigated for the better performance of elastic matching based handwritten character recognition. The eigen-deformations are estimated by the principal component analysis of actual deformations automatically collected by...

متن کامل

Handwritten Character Recognition Using Piecewise Linear Two-Dimensional Warping

In this paper, the effectiveness of piecewise linear two-dimensional warping, a dynamic programming-based elastic image matching technique, in handwritten character recognition is investigated. The present technique is capable of providing compensation for most variations in character patterns while its computation remains tractable. The superiority of the present technique over several convent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 88-D  شماره 

صفحات  -

تاریخ انتشار 2005